annotations.IVA package¶
Submodules¶
annotations.IVA.intervalvaluesanalysis module¶
- filename
sppas.src.annotations.IVA.intervalvaluesanzlysis.py
- author
Brigitte Bigi
- contact
- summary
Eval descriptive stats of values of a tier into intervals
- class annotations.IVA.intervalvaluesanalysis.IntervalValuesAnalysis(dict_items)[source]¶
Bases:
sppas.src.calculus.stats.descriptivesstats.sppasDescriptiveStatistics
Interval Values Analysis estimator class.
This class estimates IVA on a set of data values, stored in a dictionary:
key is the name of the segment;
value is the list of values observed in each segment.
>>> d = {'sgmt_1':[1.0, 1.2, 3.2, 4.1] , 'sgmt_2':[2.9, 3.3, 3.6, 5.8]} >>> iva = IntervalValuesAnalysis(d) >>> mean = iva.mean() >>> intercept, slope = iva.intercept_slope() >>> print(slope['sgmt_1']) >>> print(slope['sgmt_2'])
annotations.IVA.sppasiva module¶
- filename
sppas.src.annotations.IVA.sppasiva.py
- author
Brigitte Bigi
- contact
- summary
SPPAS integration of the IVA automatic annotation.
- class annotations.IVA.sppasiva.sppasIVA(log=None)[source]¶
Bases:
annotations.baseannot.sppasBaseAnnotation
Estimate IVA on a tier.
Get or create segments then map them into a dictionary where:
key is a label assigned to the segment;
value is the list of observed values in the segment.
- __init__(log=None)[source]¶
Create a new sppasIVA instance.
- Parameters
log – (sppasLog) Human-readable logs.
- convert(input_tier_values, input_tier_segments)[source]¶
Estimate IVA on the given input tier with values.
- Parameters
input_tier_values – (sppasTier) Tier with numerical values.
input_tier_segments – (sppasTier) Tier with intervals.
- Returns
(sppasTranscription)
- static get_input_extensions()[source]¶
Extensions that the annotation expects for its input filename.
An annotated file with measure values (pitch, intensity…), and An annotated file with a sppasTier of type ‘interval’.
- get_input_tiers(input_files)[source]¶
Return tiers with values and segments.
- Parameters
input_files – (list)
- static iva_to_tier(iva_result, sgmts_tier, tier_name, tag_type='float')[source]¶
Create a tier from one of the IVA result (mean, sd, …).
- Parameters
iva_result – One of the results of TGA
sgmts_tier – (sppasTier) Tier with the segments
tier_name – (str) Name of the output tier
tag_type – (str) Type of the sppasTag to be included
- Returns
(sppasTier)
- static iva_to_tier_reglin(iva_result, sgmts_tier, intercept=True)[source]¶
Create tiers of intercept,slope from the IVA result.
- Parameters
iva_result – intercept,slope result of IVA
sgmts_tier – (sppasTier) Tier with the segments
intercept – (boolean) Export the intercept.
If False, export Slope.
- Returns
(sppasTier)
- run(input_files, output=None)[source]¶
Run the automatic annotation process on an input.
- Parameters
input_files – (list of str) Values and Segments in a single file or in different ones
output – (str) the output file name
- Returns
(sppasTranscription)
- set_eval(occ=None, total=None, mean=None, median=None, stdev=None, linreg=None)[source]¶
Set IVA evaluations to perform.
- Parameters
total – (bool) Estimates total of values in segments.
mean – (bool) Estimates mean of values in segments.
median – (bool) Estimates median of values in segments.
stdev – (bool) Estimates standard deviation of values in segments.
linreg – (bool) Estimates linear regression of values in segments.
- set_input_tiername_segments(tiername)[source]¶
Fix the name of the tier with segments.
- Parameters
tiername – (str) Default is ‘TokensAlign’
- set_input_tiername_values(tiername)[source]¶
Fix the name of the tier with values.
- Parameters
tiername – (str) Default is ‘PitchTier’
- set_segments_separators(entry)[source]¶
Fix the separators to create segments.
- Parameters
entry – (str) Entries separated by whitespace.
- set_sgmt_prefix_label(prefix)[source]¶
Fix the prefix to add to each segment.
- Parameters
prefix – (str) Default is ‘sgmt_’
- tier_to_labelled_segments(segments, input_tier_values)[source]¶
Create the segment intervals within the values.
- Parameters
segments – (sppasTier) segment intervals to get values
input_tier_values – (sppasTier) tags are float/int values
- Returns
(dict, sppasTier) dict of segment/values, labelled segments
Module contents¶
- filename
sppas.src.annotations.IVA.__init__.py
- author
Brigitte Bigi
- contact
- summary
Interval Values Analysis - IVA
- class annotations.IVA.IntervalValuesAnalysis(dict_items)[source]¶
Bases:
sppas.src.calculus.stats.descriptivesstats.sppasDescriptiveStatistics
Interval Values Analysis estimator class.
This class estimates IVA on a set of data values, stored in a dictionary:
key is the name of the segment;
value is the list of values observed in each segment.
>>> d = {'sgmt_1':[1.0, 1.2, 3.2, 4.1] , 'sgmt_2':[2.9, 3.3, 3.6, 5.8]} >>> iva = IntervalValuesAnalysis(d) >>> mean = iva.mean() >>> intercept, slope = iva.intercept_slope() >>> print(slope['sgmt_1']) >>> print(slope['sgmt_2'])
- class annotations.IVA.sppasIVA(log=None)[source]¶
Bases:
annotations.baseannot.sppasBaseAnnotation
Estimate IVA on a tier.
Get or create segments then map them into a dictionary where:
key is a label assigned to the segment;
value is the list of observed values in the segment.
- __init__(log=None)[source]¶
Create a new sppasIVA instance.
- Parameters
log – (sppasLog) Human-readable logs.
- convert(input_tier_values, input_tier_segments)[source]¶
Estimate IVA on the given input tier with values.
- Parameters
input_tier_values – (sppasTier) Tier with numerical values.
input_tier_segments – (sppasTier) Tier with intervals.
- Returns
(sppasTranscription)
- static get_input_extensions()[source]¶
Extensions that the annotation expects for its input filename.
An annotated file with measure values (pitch, intensity…), and An annotated file with a sppasTier of type ‘interval’.
- get_input_tiers(input_files)[source]¶
Return tiers with values and segments.
- Parameters
input_files – (list)
- static iva_to_tier(iva_result, sgmts_tier, tier_name, tag_type='float')[source]¶
Create a tier from one of the IVA result (mean, sd, …).
- Parameters
iva_result – One of the results of TGA
sgmts_tier – (sppasTier) Tier with the segments
tier_name – (str) Name of the output tier
tag_type – (str) Type of the sppasTag to be included
- Returns
(sppasTier)
- static iva_to_tier_reglin(iva_result, sgmts_tier, intercept=True)[source]¶
Create tiers of intercept,slope from the IVA result.
- Parameters
iva_result – intercept,slope result of IVA
sgmts_tier – (sppasTier) Tier with the segments
intercept – (boolean) Export the intercept.
If False, export Slope.
- Returns
(sppasTier)
- run(input_files, output=None)[source]¶
Run the automatic annotation process on an input.
- Parameters
input_files – (list of str) Values and Segments in a single file or in different ones
output – (str) the output file name
- Returns
(sppasTranscription)
- set_eval(occ=None, total=None, mean=None, median=None, stdev=None, linreg=None)[source]¶
Set IVA evaluations to perform.
- Parameters
total – (bool) Estimates total of values in segments.
mean – (bool) Estimates mean of values in segments.
median – (bool) Estimates median of values in segments.
stdev – (bool) Estimates standard deviation of values in segments.
linreg – (bool) Estimates linear regression of values in segments.
- set_input_tiername_segments(tiername)[source]¶
Fix the name of the tier with segments.
- Parameters
tiername – (str) Default is ‘TokensAlign’
- set_input_tiername_values(tiername)[source]¶
Fix the name of the tier with values.
- Parameters
tiername – (str) Default is ‘PitchTier’
- set_segments_separators(entry)[source]¶
Fix the separators to create segments.
- Parameters
entry – (str) Entries separated by whitespace.
- set_sgmt_prefix_label(prefix)[source]¶
Fix the prefix to add to each segment.
- Parameters
prefix – (str) Default is ‘sgmt_’
- tier_to_labelled_segments(segments, input_tier_values)[source]¶
Create the segment intervals within the values.
- Parameters
segments – (sppasTier) segment intervals to get values
input_tier_values – (sppasTier) tags are float/int values
- Returns
(dict, sppasTier) dict of segment/values, labelled segments