calculus.geometry package¶
Submodules¶
calculus.geometry.distances module¶
- filename
sppas.src.calculus.geometry.distances.py
- author
Brigitte Bigi
- contact
- summary
A collection of basic distance estimators.
- Distance axioms:
d(x,y) = 0 iff x = y
d(x,y) = d(y,x)
d(x,z) <= d(x,y) + d(y,z)
- calculus.geometry.distances.chi_squared(x, y)[source]¶
Estimate the Chi-squared distance between two tuples.
- Parameters
x – a tuple of float values
y – a tuple of float values
- Returns
(float)
x and y must have the same length.
>>> x = (1.0, 0.0) >>> y = (0.0, 1.0) >>> round(chi_squared(x, y), 3) >>> 1.414
- calculus.geometry.distances.euclidian(x, y)[source]¶
Estimate the Euclidian distance between two tuples.
- Parameters
x – a tuple of float values
y – a tuple of float values
- Returns
(float)
x and y must have the same length.
>>> x = (1.0, 0.0) >>> y = (0.0, 1.0) >>> round(euclidian(x, y), 3) >>> 1.414
- calculus.geometry.distances.manathan(x, y)[source]¶
Estimate the Manathan distance between two tuples.
- Parameters
x – a tuple of float values
y – a tuple of float values
- Returns
(float)
x and y must have the same length.
>>> x = (1.0, 0.0) >>> y = (0.0, 1.0) >>> manathan(x, y) >>> 2.0
- calculus.geometry.distances.minkowski(x, y, p=2)[source]¶
Estimate the Minkowski distance between two tuples.
- Parameters
x – a tuple of float values
y – a tuple of float values
p – power value (p=2 corresponds to the euclidian distance)
- Returns
(float)
x and y must have the same length.
>>> x = (1.0, 0.0) >>> y = (0.0, 1.0) >>> round(minkowski(x, y), 3) >>> 1.414
- calculus.geometry.distances.squared_euclidian(x, y)[source]¶
Estimate the Squared Euclidian distance between two tuples.
- Parameters
x – a tuple of float values
y – a tuple of float values
- Returns
(float)
x and y must have the same length.
>>> x = (1.0, 0.0) >>> y = (0.0, 1.0) >>> squared_euclidian(x, y) >>> 2.0
calculus.geometry.linear_fct module¶
- filename
sppas.src.calculus.stats.linear_fct.py
- author
Brigitte Bigi
- contact
- summary
Linear functions
A linear function from the real numbers to the real numbers is a function whose graph - in Cartesian coordinates with uniform scales, is a line in the plane.
The equation y = ax + b is referred to as the slope-intercept form of a linear equation.
- calculus.geometry.linear_fct.intercept(p1, p2)[source]¶
Estimate the intercept between 2 points.
- Parameters
p1 – (tuple) first point as (x1, y1)
p2 – (tuple) second point as (x2, y2)
- Returns
float value
- calculus.geometry.linear_fct.linear_fct(x, a, b)[source]¶
Return f(x) of the linear function f(x) = ax + b.
- Parameters
x – (float) X-coord
a – (float) slope
b – (float) intercept
- calculus.geometry.linear_fct.linear_values(delta, p1, p2, rounded=6)[source]¶
Estimate the values between 2 points, step-by-step.
Two different points p1=(x1,y1) and p2=(x2,y2) determine a line. It is enough to substitute two different values for ‘x’ in the linear function and determine ‘y’ for each of these values.
a = y2 − y1 / x2 − x1 <= slope b = y1 - a * x1 <= intercept
Values for p1 and p2 are added into the result.
- Parameters
delta – (float) Step range between values.
p1 – (tuple) first point as (x1, y1)
p2 – (tuple) second point as (x2, y2)
rounded – (int) round floats
- Returns
list of float values, i.e. all the y, including the ones of p1 and p2
- Raises
MemoryError could be raised if too many values have to be returned.
- calculus.geometry.linear_fct.slope(p1, p2)[source]¶
Estimate the slope between 2 points.
- Parameters
p1 – (tuple) first point as (x1, y1)
p2 – (tuple) second point as (x2, y2)
- Returns
float value